www.myr	mathscloud.com	Nymathscloud
Please check the examination de Candidate surname	tails below before entering your candidate information Other names	'scloud.
Pearson Edexcel Level 3 GCE	Centre Number Candidate Number	
Sample Assessment Material		
(Time: 1 hour 30 minutes) Further Mathe Advanced Paper 4A: Further Pur		
You must have: Mathematical Formulae and Sta	atistical Tables, calculator	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B)
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

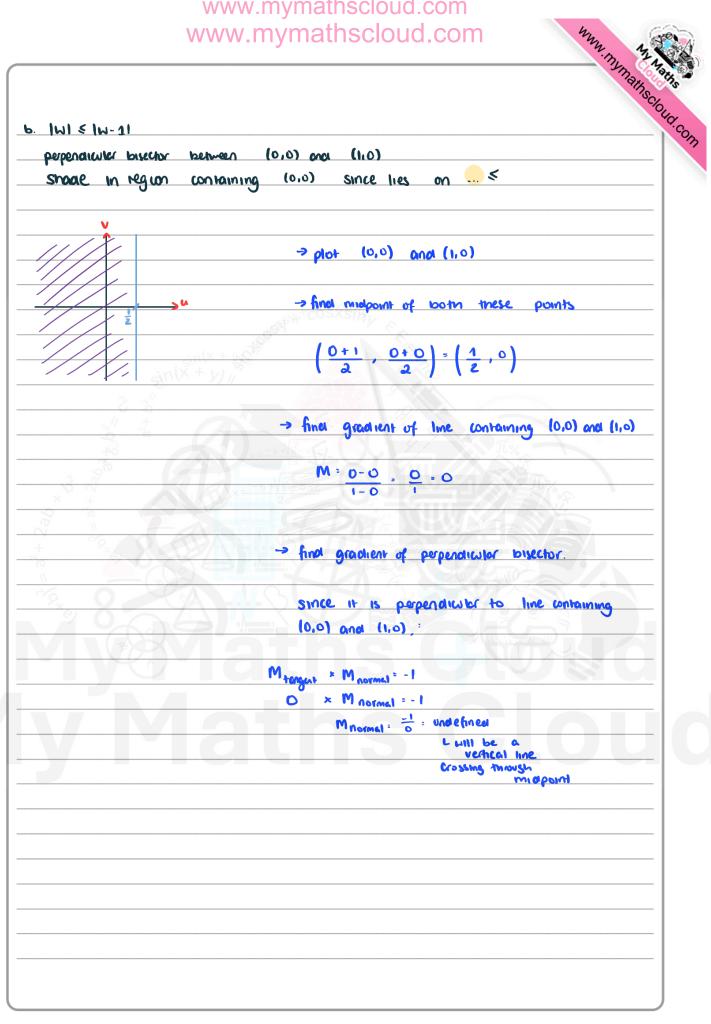
Turn over 🕨

Answer ALL questions. Write your answers in the spaces provided.

1. (a) Show that the transformation

$$w = \frac{z-1}{z} \qquad z \neq 0$$

(3)


maps the locus |z - 1| = 1 in the z-plane onto the locus |w| = |w - 1| in the w-plane.

The region $|z - 1| \leq 1$ in the z-plane is mapped onto the region T in the w-plane.

(b) Shade the region *T* on an Argand diagram.

(2)

www.mymathscloud.com
3.2: Regions in an Argonal Diagram 3.3: Transformations of the Complex Plane
www.mymathscloud.com 3.2: Regions in an Argonal Diagram 3.3: Transformations of the Complex Plane $\frac{10. \omega = \frac{2-1}{2}}{2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
12-11-1
$\frac{1}{1-\omega} = 1$
$\frac{ 1-(1-\omega) }{ 1-\omega } = 1$
$\frac{1-1+\omega}{1-\omega} = 1$
$\frac{ w }{ -w } = 1$ $\frac{ w }{ w } = 1$ $\frac{ w }{ v } = 1$ $\frac{ w }{ v } = 1$
w = 1-w
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
W = W-1 W = W-1

2.
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{pmatrix}$$

(a) Verify that $\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ is an eigenvector of **A** and find the corresponding eigenvalue.

(b) Show that 9 is another eigenvalue of A and find a corresponding eigenvector.

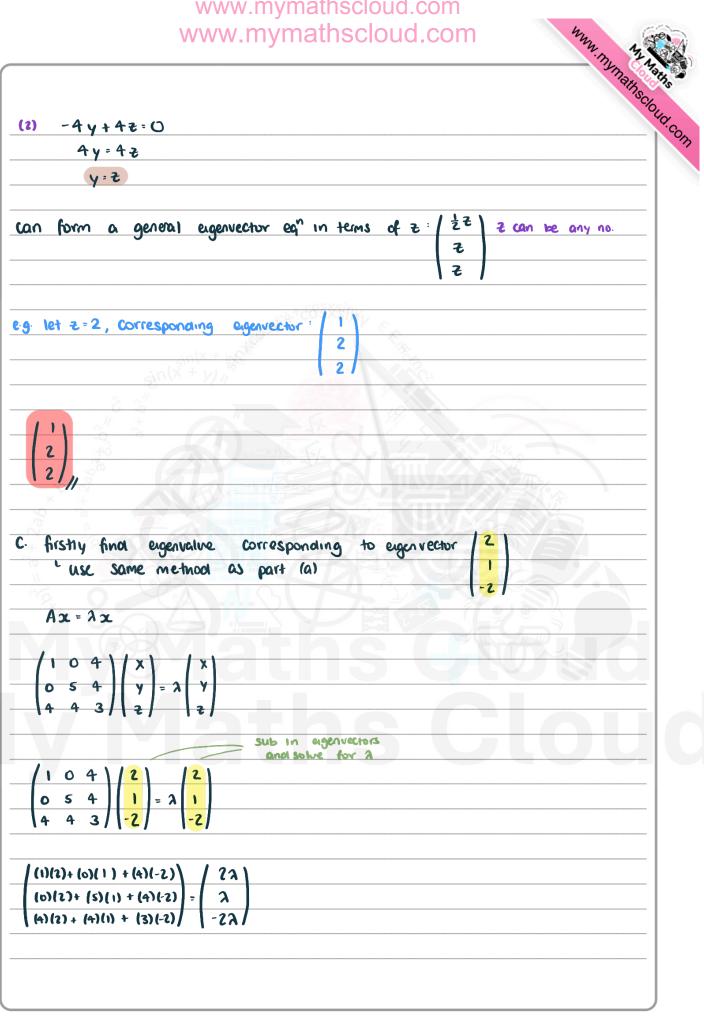
(5)

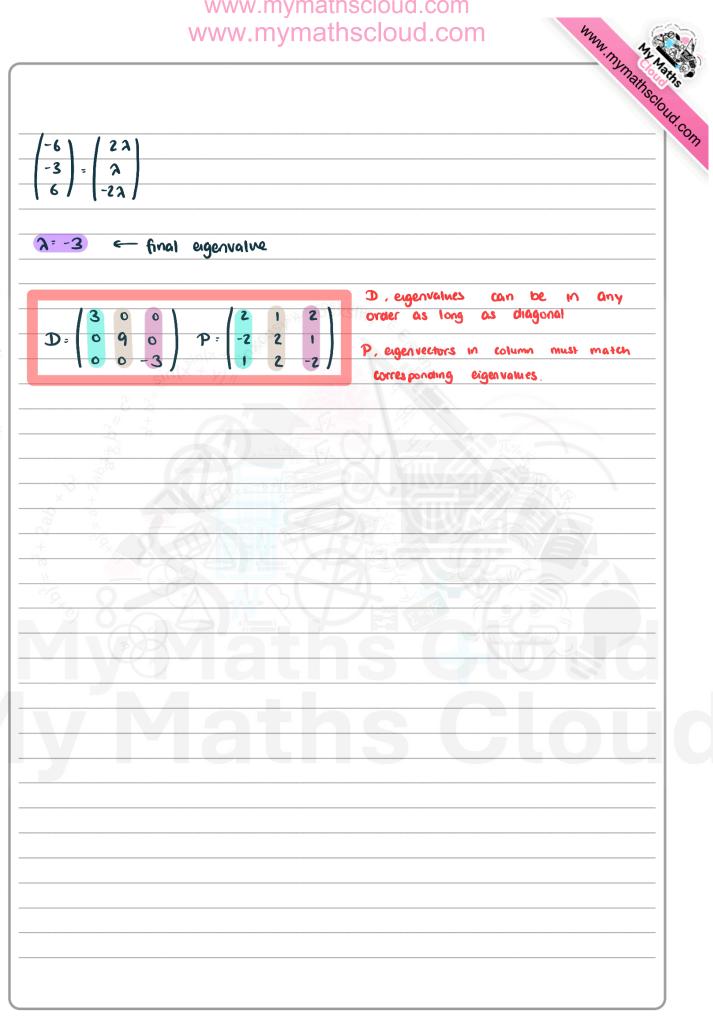
(4)

(3)

Given that a third eigenvector of A is $\begin{pmatrix} 2\\ 1\\ -2 \end{pmatrix}$

(c) write down a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that


$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{D}$$


hu

100

۲ 	N. D. 12
······································	W. THY TRAINSCIOL
$A \mathbf{x} = \lambda \mathbf{x}$	
$ \begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix} $	
Sub in eigenvectors and solve for a	
$ \begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} $	
(1)(2)+ (0)(-2) + (4)(1) / 22	
$(0)(2)+(5)(-2)+(4)(1) = -2\lambda$	
(4)(2) + (4)(-2) + (3)(1) / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	
(6) (2)	
$-6 = -2\lambda$	
$\left(\begin{array}{c} 3 \\ 3 \end{array} \right) \left(\begin{array}{c} \lambda \\ \lambda \end{array} \right)$	
6 - 22	
λ=3	
3 is corresponding eigenvalue /	
Charack(istic eq ⁿ : det (A-λI) = 0	
if 9 is an eigenvalue alet (A-9I)=0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 0 $	
$ \begin{array}{c} A - \lambda I = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3 \end{pmatrix} - \begin{pmatrix} q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} $	

		WWW. ITY Mainse
$A - \lambda I = \begin{pmatrix} 1 - 9 & 0 & 4 \\ 0 & 5 - 9 & 4 \\ 4 & 4 & 3 - 9 \end{pmatrix} = \begin{pmatrix} -9 \\ 0 \\ 4 \end{pmatrix}$	0 4	
$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 0 & 5 \cdot 9 & 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	-4 4	
4 4 3-9/ 4	4 -61	
$\begin{bmatrix} 1 - 8 & 0 & 4 \end{bmatrix}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4 4 -6		
	- cosyci-	
(-8) -4 4 - (0) 0 4 4 -6 4 -6	+ (4) 0 -4 = 0	
4 - 6 14 - 6	4 4]	
(- 8) [[-4)(-6) - (4)(4)] + (4) [])		
(-8)[[-4)[-6)-(4)(4)]+ (4)[]6	1-1-41(4)]=0	
(-8)(8)+(4)(16)=0		Ta
· 9 is an eigenvalue ,		
× +	20	
/104]/x] /x]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4 4 3/2/2/		
*5, 0, CA.		
x + 0y + 4z = 9x		
Ox+5y+42=9y	Thele	
4x + 4y + 32 = 92		
- 8x + 4z = 0 (I)		
-4y+4z=0 (2)		
42+4y-6z=0 (3)		
(I) -8x+4z=0		
82=47		
22:2 ⇒ x= 22		

3. (i) Lottery X requires each player to buy a ticket and choose 5 different numbers from the numbers 1 to 45 inclusive.
Lottery Y requires each player to buy a ticket and choose 6 different numbers from the numbers 1 to 35 inclusive.
A player wins if their chosen numbers match completely those drawn at random by the lotteries.
A person wishes to play one of these two lotteries.

The price of a ticket to play each lottery is the same. The prize money for winning each lottery is the same.

Decide which lottery you would recommend that they play, giving a reason for your answer.

(2)

(4)

(3)

(3)

- (ii) Use Fermat's little theorem to show that when 128¹²⁹ is divided by 17 the remainder is 9
- (iii) There are 3x chairs in a room. When these chairs are set out in rows of 7 there are two chairs left over.
 - (a) Form and solve a congruence equation for x

Given that there are at least 100 chairs and that one third of the chairs can be arranged exactly into 5 equal rows,

(b) find the least possible number of chairs in the room.

S Solving congruence c quations	ymathscloud.com 16: Fermat's Little Theorem $1.7:$ Combinatoric $32145 \left(\frac{45}{5}\right) = 1,221,75935 \left(\frac{35}{5}\right) = 1,623,160$
3) Lotlery X choose 5 no.s from	n 45 (45)- 1,221,759
Lottery Y: choose 6 no.s from	$35 \binom{35}{6} = 1,623,160$
: probability of winning X	= 1/1,221,759
* probability of winning Y	= 1/ 162 3160
1/1.221,759 > 1/1623160	APH-COSXSINV C.
- Lottery X has better oad	SII NOT
$\sin(x + y)$	
2	
ii. Fermat's Little Theorem: a	⁶ = 1 (mod 17)
128 ¹²⁹ = (128 ¹⁶) ⁸ × 128	b + N2 - 4 C/ 20 V - 4 ac D - 1 D
(1	
(128) ¹²⁹ (mod 17) (128 ¹⁶) ⁸ × 128 (mod 17)	
$(128) \times 128 \pmod{17}$ $1 \times 128 \pmod{17}$	
$128 \pmod{17} = 9$	
« remainder is 9 11	
iiia. congruence $eq^n: 3 x = 2$	(mod 7)
ga (3,7)	
7 = 2(3)+1 →]= 7-2(3)	3(-2)+ 7(1) = 1
3= 3(1)	X=-2, Y=1
3x+7y=1	
3x = 1 (moa 7)	
3(-2)= 1 (moa 7)	

www.mymainscioud.com	W. Myn
	W. Mynainsch
-2 is multiplicative inverse	
$(-2) \times 32 \equiv (-2) \times 2 \pmod{7}$	
$2c \equiv -4 \pmod{7}$	
$2 \equiv 3 \pmod{7}_{\parallel}$	
$3x \ge 100$ $x \ge \frac{100}{3}$ (33.3) $x \ge 34$	
3(3x) can be arranged in 5 equal rows (divisible by 5)	
$L \mathcal{L} \equiv O \pmod{5}$	
$\mathcal{X} = 3 \pmod{7} + \sqrt{2}$	
l must find values of or nere also divisible by 5.	
× = 3,10,17,24,31,38,45	
3x = 3(45) = 135	
Least no. of chairs in room = 135	

4. (i) Two distinct elements of a group G are a and b. The element a has order 5 and $a^{3}b = ba^{3}$ Prove that ab = ba

Given that p, q, r and s are distinct elements

- (ii) (a) check each of the group axioms for the set $A = \{p, q, r, s\}$ under the operation \oplus defined in the table below.
 - (b) Hence determine whether the set A forms a group under the operation \oplus .

\oplus	р	9	r	S
р	p	cosquisin	r	S
q	q	p	9	r
(Xr V)	r	q	p	q
\$	S	r	q	p

(3)

(4)

a ⁶ b = ba	6 6
ab = b0	
a. To prove	If A is a group, must cneck the following:
-	I transformations in cayley table are in set A, so closed ~
	is the identity
	IS Its own self inverse
	is its own self inverse
× ÷ S	is its own self inverse
associativity	$(\mathbf{q} \oplus \mathbf{r}) \oplus \mathbf{s} = \mathbf{q} \oplus \mathbf{s} = \mathbf{r}$
+ ~ 2x6	$q \oplus (\mathbf{r} \oplus \mathbf{s}) = q \oplus q = P$
	$(q \oplus r) \oplus S \neq q \oplus (r \oplus S) $ in Not associative X
· Since F	A is NOT associative, set A is NOT a group "
the second se	
y	
	Mathe Clai
	Maths Clou

5.

$$I_n = \int_0^{\frac{\pi}{2}} x^n \cos x \, \mathrm{d}x, \qquad n \ge 0$$

(a) Prove that, for $n \ge 2$

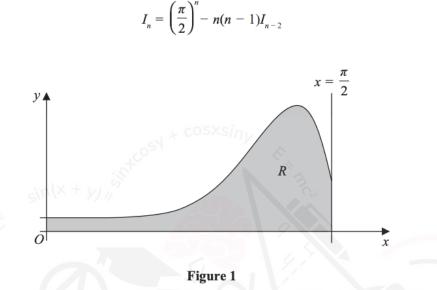


Figure 1 shows the vertical cross-section of a proposed flood defence system. The cross-section of the flood defence system is modelled by the curve with equation

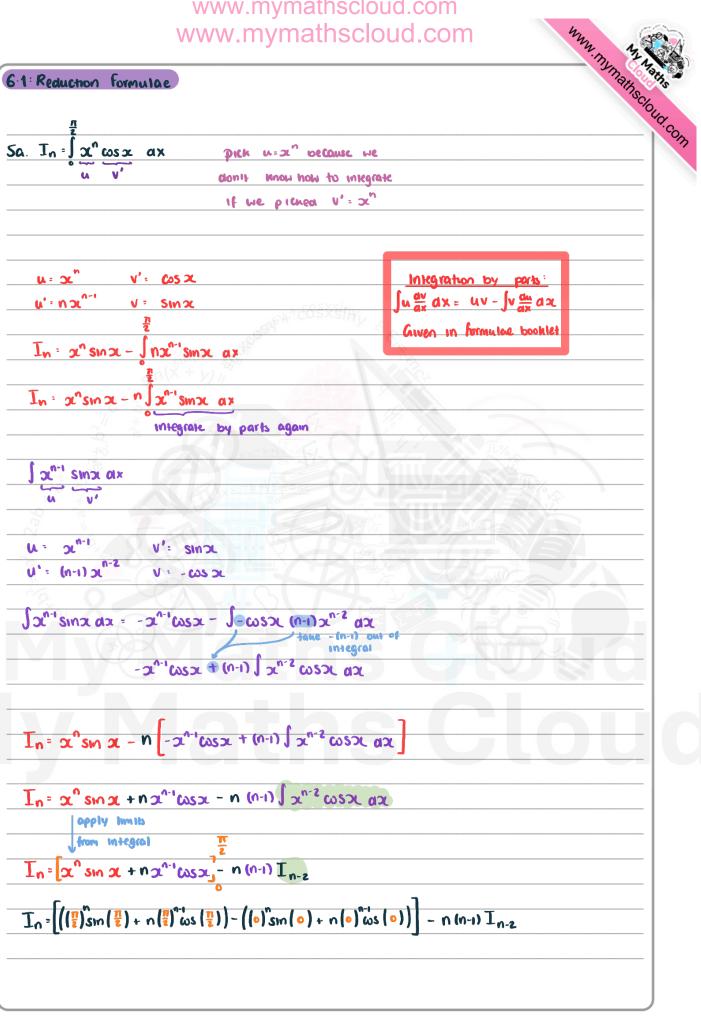
$$y = 1.2x^6\cos x + 0.2 \qquad 0 \leqslant x \leqslant \frac{\pi}{2}$$

where x and y are measured in metres.

The area *R*, shown shaded in Figure 1, is bounded by the curve, the *y*-axis, the *x*-axis and the line with equation $x = \frac{\pi}{2}$

The flood defence system will come in hollow sections that will be filled with water once they are in place. Each section will have a length of 10 metres.

(b) Use the model and the answer to part (a), to estimate the volume of water needed to fill each section.


Each section can be filled with water at a maximum rate of 175 litres per minute and is required to be filled with water within 1 hour of being put in place.

(c) Use the model to decide whether this requirement can be met, showing all your reasoning.

(2)

(6)

(5)

www.mymathscloud.com
www.mymathscloud.com $I_2 = \frac{\pi^2}{4} - 2(I) = \frac{\pi^2}{4} - 2$
$[q = \frac{\pi^4}{16} - 12\left(\frac{\pi^2}{3} - 2\right) = \frac{\pi^4}{16} - 3\pi^2 + 24$
$\left[\int_{6}^{2} \frac{\pi^{6}}{64} - 30\left(\frac{\pi^{4}}{16} - 3\pi^{2} + 24\right) = \frac{\pi^{6}}{64} - \frac{15\pi^{4}}{8} + 90\pi^{2} - 720 \right]$
$A = 1.2 \left(\frac{n^6}{64} - \frac{15n^9}{8} + 90\pi^2 - 720 \right) + \frac{\pi}{10}$
ANT COLLEMNY C
A= 1:087027136m2
$\sin(x + y)$
nust do Cross-sectional area × lengtin = volume
+3 10mg
Given in Q
101ume = 1.0870 27 136 × 10
· 10.87027136m ³
0.9m ³ (35.f.)
$10.9 \text{ m}^3 = 10900 \text{ inves}$
$\frac{10400 \iota}{2} = \frac{436}{7} \text{min} \approx 62.3 \text{min} (35.1)$
175 L mm ⁻¹ +
623>60
in will take over an how to fill
· requirement cannot be met

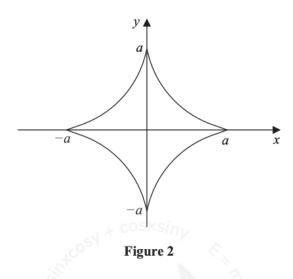


Figure 2 shows the curve with parametric equations

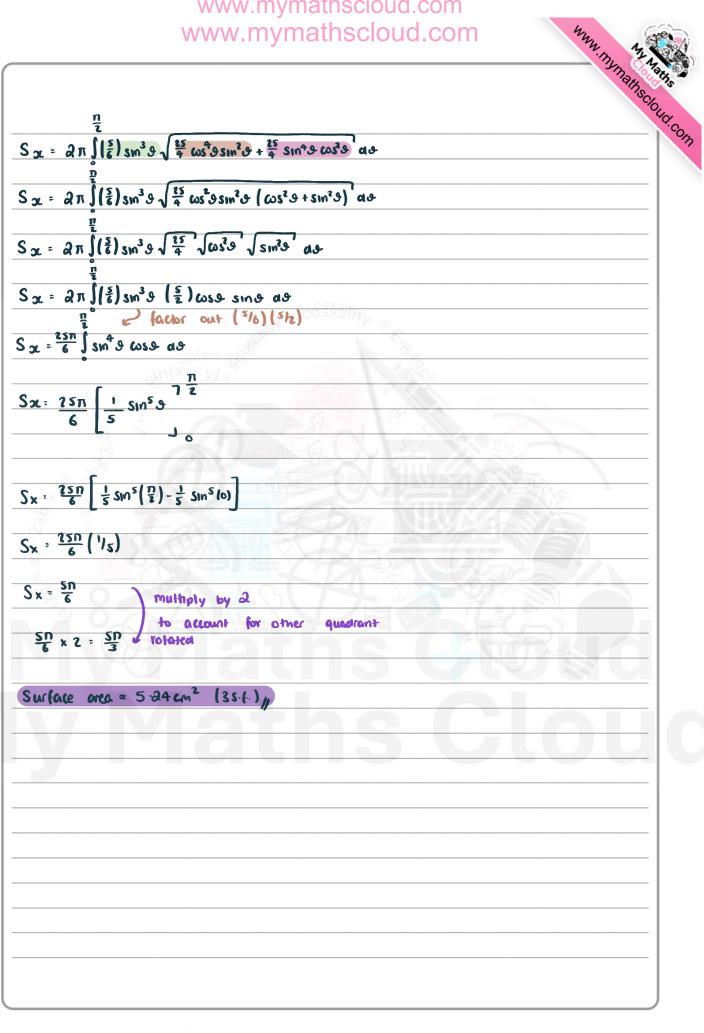
 $x = a\cos^3\theta \qquad y = a\sin^3\theta \qquad 0 \le \theta < 2\pi$

where a > 0

(a) Find the total length of this curve in terms of *a*.

The curve is used to model the design for a new sweet. The curve is rotated through π radians about the x-axis to create the shape of a sweet. The sweet is to be covered in chocolate.

(7)


(6)

Given that the total length of the curve is 5 cm,

(b) estimate the surface area of the sweet that is to be covered in chocolate.

	s: Area of a Surface of Re	volution	www.mymaths
$S = \int \sqrt{\frac{a_x}{a_t}^2} +$	(ay) ² at GIVEN IN FORMULA	ae Booklet)	
X = 0 ωs ³ θ			
as - 30 cos 3 si	19		
$\left(\frac{\alpha x}{\alpha \phi}\right)^2 = \left(-3\alpha \cos^2 \phi\right)$	$(sms)^2 = 9a^2\cos^4s \sin^2s$		
y = a sin ³ g	and the cost sin	Ve.	
07 - 30 SIN 9 605	9 July to the stand		
$\left(\frac{dy}{dy}\right)^2$ (3asin ² y w	$(s_2)^2 = Qa^2 sin^4 g cus^2 g$	47.1	
2 %			
$S = \sqrt{9a^2\omega s^2 + s_1}$	1 9 + 9 2 5 11 5 WS 9 as		
40	xb+V2-464	I.4 .	1
200 A C			
$S = \sqrt{9a^2 \omega s^2 \vartheta s m}$	$f \Rightarrow (\cos^2 \vartheta + \sin^2 \vartheta)' d\vartheta$		C.A
	remember wight + s	$\sin^2 \Theta = 1$	
$S = \sqrt{9a^2 \omega s^2 \vartheta s m}$	2 9 (1) as as		
t spl	t surd		
S= 19 102 10059	15112 9 010		
2 0 G			S
$5 : \int 3a \cos \theta \sin \theta$	e de		
S = 3a S coso sino	0.0		
S: 3a [25112]			
se need to fin	a length of curve		
	in from (0,a) to (0,0)	Il then ×4 to find	entre length
			J
must final (0, a	and (a, o) in terms of S) (parametric)	
	•	•	

WW	w.mymathscloud.com
	ww.mymathscloud.com
X = 0	SCIOL
€ ² 20 0 = 0	
Ο = ωs ³ θ	
659= O	
9 · 11	
X = C	
$Q = Q \cos^3 Q$	cosxsin
(ws ³ .9.7)	SPH-COSXSIMY &
در به عنه المعني (C) الم	+ 105
9·0	
$S = 4 \times 3a \left[\frac{1}{2} \sin^2 9 \right]^{\frac{1}{2}}$	
$S = 12a \left[\left(\frac{1}{2} \right) - (0) \right]$	xb+12-4421 7.9%
2 20	
S=12a(1/2)	
S = 6a	
+ ² ×	
length of wrve : 6all	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
b. Q states length:5	
- 6a=S	
a = 5/6	
$S_{x} = 2\pi \int y \sqrt{\left(\frac{a_{y}}{a_{t}}\right)^{2} + \left(\frac{a_{y}}{a_{t}}\right)^{2}}$	at FORMULAE BOOKLET
use same limits as po	
use working from part	(G) but now sub in $a = 5/6$
(AK)2 (5.)2	15
$\left(\frac{\alpha x}{\alpha \phi}\right)^2 = 9\left(\frac{5}{6}\right)^2 \cos^4 \theta \sin^2 \theta =$	ີ ຊັ ເວິຣ ⁴ ອ sm ⁶ ອ
(dy) ² 0/5/12	- 25
$\left(\frac{\partial Y}{\partial y}\right)^2 = 9\left(\frac{5}{6}\right)^2 \sin^4 \theta \cos^2 \theta =$	- <del></del>

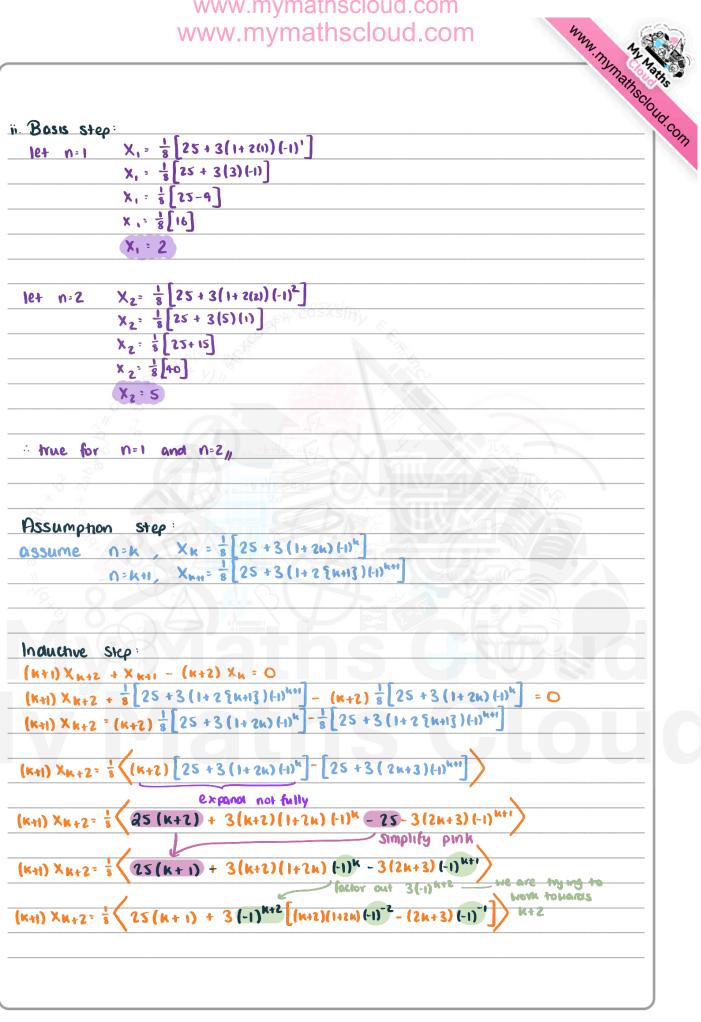


7. (i) Solve the recurrence relation

$$U_{n+2} = 6U_{n+1} - 9U_n + 4 \qquad n \ge 1$$
$$U_1 = 4 \qquad U_2 = 7$$
(7)

(ii) A sequence  $x_1, x_2, x_3, \dots$  is defined by

$$(n + 1)x_{n+2} + x_{n+1} - (n + 2)x_n = 0$$
  $n \ge 1$   
 $x_1 = 2$   $x_2 = 5$ 


Prove by induction that, for  $n \in \mathbb{Z}^+$ 

$$x_n = \frac{1}{8} \left[ 25 + 3(1+2n) \left( -1 \right)^n \right]$$

(6)

1.3: Solving 2 nd Order	Recurrence Rela	hons 44 Pro	oving Closed	Forms	Unaths
i. Associated homog	enous rewrience re	IGHOO :			
Un+2 = 64n+1 - 94					
Un+2 - 64n+1 +9	Un=0				
$y^2 - 6y + 9 = 0$					
(r-3) ² =0					
۲=3					
Complementary h	unction (C.F.)	COSXSINV &			
Un (A+Bn)(3 ⁿ	antx + incton				
sin	x + y) 11				
2 ~		43.2 2			
Try the particular	· Integral (PI):				
64-	xb+VL- 2a	Un+1 P		TL %	
		Uner P		1.	
N=6N-9N+4 4N=4	Zat	A A			
+ 12	ALC: NO	A LA			
P.I. = 1			X		
	A LOI				
gen sol": C.F. + P.I				225	
$U_{n} = (A + B_{n})(3^{n})$					7
Using boundary conditi	ions, to form 2 eq	's containing	A and B and	solve smultan	eously
<b>U</b> , = <b>4</b>	•				
$\frac{U_{1} = (14 + B(1))(3') + 1}{2}$	- 4-				
4 = (A + B) + 1					
3A+3B=3 1					

$U_2 = 7$	4 - 7		n www.n	
$U_2$ : (A+B(2)) (3 ² ) + 7= (A+2B)9 + 1	1 * +			
9A+1838 = 6				
3A + 6B = 2 2				
0.0.2.2				
3A + 3B = 3 3A + 6B · 2 (-)	SWT COS	XSIN		
-3B = 1	120 ⁶³	C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.		
B = - 1/3	$\frac{\sin(x + y_{x})^{2}}{\sin(x + y_{x})}$			
2				
3A+3B=3	AL AS	9		
3A+3(-1/3):3	x b + 12-4661	GU 22	Π%_	
3A-1=3	24 11		A A A A A A A A A A A A A A A A A A A	
3A: 4	x=b+vb=4ac 2a			
A= 413				
+ " ⁹ ×5				
A=413 and B=-	1/3			
(4 (m) (m)				
$U_{n} = \left(\frac{4}{3} - \frac{1}{3}n\right)(3^{n}) +$	1			



www.mymathscloud.com  $\frac{(k+1) \times k+2}{3} \left( 25 (k+1) + 3 (-1)^{k+2} [(k+2)(1+2k)(1) - (2k+3)(-1)] \right)$ Simplify  $(k+1) \times k+2 = \frac{1}{8} \left( 25(k+1) + 3(-1)^{k+2} \left[ 2k^2 + 5k+2 + 2k+3 \right] \right)$ 1 factorise  $(k+1) \times k+2 = \frac{1}{8} \left( 25(k+1) + 3(-1)^{k+2} \left[ 2k^2 + 7k + 5 \right] \right)$ JETT X H+2= \$ 25 (K+1) + 3 (-1) + 2 (2K+5) [K+1) divide everytning by (Kti)  $\chi_{k+2} = \frac{1}{8} \left( 25 + 3(2k+5)(-1)^{N+2} \right)$  $X_{k+2} = \frac{1}{3} \left[ 25 + 3(1+2(k+2)) (-1)^{k+2} \right]$ Result holds for n= k+2 Conclusion If the formulae is true for n=k and n=k+1, then it is shown to be true n=k+2. As the result is the for n=1 and n=2 it is now for also the for all n E Zt by mathematical induction 11